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OBJECTIVE

The decline of estimated glomerular filtration rate (eGFR) in patients with type 2
diabetes is variable, and early interventions would likely be cost-effective. We
elucidated the contribution of 17 plasma biomarkers to the prediction of eGFR loss
on top of clinical risk factors.

RESEARCH DESIGN AND METHODS

We studied participants in PROVALID (PROspective cohort study in patients with
type 2 diabetes mellitus for VALIDation of biomarkers), a prospective multina-
tional cohort study of patients with type 2 diabetes and a follow-up of more than
24months (n = 2,560; baselinemedian eGFR, 84mL/min/1.73m2; urine albumin-to-
creatinine ratio, 8.1 mg/g). The 17 biomarkers were measured at baseline in 481
samples using Luminex and ELISA. The prediction of eGFR decline was evaluated
by linear mixed modeling.

RESULTS

In univariable analyses, 9 of the 17 markers showed significant differences in me-
dian concentration between stable and fast-progressing patients. A linear mixed
model for eGFR obtained by variable selection exhibited an adjusted R2 of 62%. A
panel of 12 biomarkers was selected by the procedure and accounted for 34% of the
total explained variability, of which 32% was due to 5 markers. The individual
contribution of each biomarker to the prediction of eGFR decline on top of clinical
predictors was generally low.When included into the model, baseline eGFR exhibited
the largest explained variability of eGFR decline (R2 of 79%), and the contribution of
each biomarker dropped below 1%.

CONCLUSIONS

In this longitudinal study of patients with type 2 diabetes and maintained eGFR
at baseline, 12 of the 17 candidate biomarkers were associated with eGFR decline,
but their predictive power was low.

The incidence of patients with type 2 diabetes is increasing worldwide, and diabetic
kidney disease (DKD) is a major cause of premature disability and death. Interven-
tions in later-stage chronic kidney disease (CKD) can only limit the damage, and thus
it is necessary to risk-stratify incident patients according to their projected dis-
ease course (1,2). Unfortunately, the prediction of an individual’s loss of estimated
glomerular filtration rate (eGFR) based on clinical and demographic parameters is
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poor (3). Thus, research in the last decade
focused on the discovery of molecular
markers for the refinement of individual
CKD progression (4).
Several candidate markers have been

discovered that showed statistical asso-
ciationswith eGFRdeclineor progression
of proteinuria (5). However, kidney dis-
ease in patients with type 2 diabetes is
driven by a heterogeneous set of path-
ophysiological processes (6).
Consequently, it is unlikely that a sole

marker can capture all of these different
pathophysiological processes that lead
to CKD progression. Investigators thus
focused on parsimonious multimarker
panels. Such a molecular selection was
derived and experimentally tested in
the European Union Seventh Framework
Programme for Research project SysKid
(Systems Biology toward Novel Chronic
Kidney Disease Diagnosis and Treat-
ment) (7). The biomarker panel added
explained variability to a “clinical vari-
able only” model but has not yet been
thoroughly validated in an independent
cohort. In addition, several other prog-
nostic biomarkers for kidney disease
progression in patients with diabetes
have been identified but were never
validated as a combined marker panel
in a specifically designed prospective
cohort.
The aim of our study was to integrate

high-evidence biomarker candidates in
a parsimonious panel of prognostic mar-
kers and to test their ability to predict
eGFR loss when combined with com-
monly available clinical risk factors.
The BEAt-DKD consortium (Biomarker

Enterprise to Attack DKD; http://www
.imi.europa.eu/projects-results/project-
factsheets/beat-dkd) was founded to
identify targetable mechanisms and path-
ways underlying initiation and progres-
sion of DKD and to identify and validate
biomarkers of disease progression and
treatment responses. One of its first
tasks is the validation of the best avail-
able biomarker candidates in a prospective

cohort of patients with type 2 diabetes
and early-stage kidney disease.

RESEARCH DESIGN AND METHODS

Biomarker Selection
Biomarkers for the current study were
selected from biomarker candidates
generated by the SysKid and SUMMIT
(SUrrogatemarkers forMicro- andMacro-
vascular hard endpoints for Innovative
diabetes Tools) consortia (8,9). We in-
tegrated diverse sources of information
relevant to the relationship with DKD,
including evidence from literature (4),
transcriptomic analyses from microdis-
sected renal tissue ascertained from
subjects with DKD (www.nephroseq.org),
whole-blood methylation profiles from
patients with type 1 diabetes with and
without DKD, and genetic association
data. Priority biomarkers from this inte-
gration were assessed for availability of
Luminex and ELISA assays and combined
to maximize the number of markers that
could be measured in a single sample
aliquot. A list of candidates from which
the current 17 markers were selected is
provided in Supplementary Table 1.

Study Cohort and Selection of Study
Participants
The study cohort was derived from
PROVALID (PROspective cohort study in
patients with type 2 diabetes mellitus
for VALIDation of biomarkers), a multi-
national cohort study of patients with
type 2 diabetes and incident or early
CKD (10–12). A flowchart of patient se-
lection is provided in Supplementary
Fig. 1. There were 4,065 subjects recruited
in five countries, and 2,560 subjects,
from Austria, Hungary, and Scotland,
were available for this study. After ex-
cluding subjects with less than 720 days
of follow-up (FU), patients were grouped
by CKD stage and by quintiles based on
their individual eGFR slopes (Supple-
mentary Table 2). PROVALID recruited
subjects at the primary health care level,
and thus thenumber of patients in stages

G4 and G5 is low. For the remaining
stages (G1 to G3b), samples in the
fourth quintile (eGFR slope [20.79,
1.39] mL/min/1.73 m2/year) and first quin-
tile (eGFR slope [224.9, 25.2] mL/min/
1.73 m2/year) were deemed to be stable
and fast progressors, respectively. Within
the first quintile, stage G3 was under-
represented compared with the stable
group and was therefore supplemented
from the second quintile [25.2,22.58].
This selection yielded 258 patients in
the stable group (median eGFR slope,
0.1 mL/min/1.73 m2/year) and 223 pa-
tients in the fast progressors group (me-
dian eGFR slope, 26.75 mL/min/1.73
m2/year). The two groups were closely
matched for age, sex, BMI, blood pres-
sure, and baseline eGFR. Demographics
of the study population and medication
details are provided in Table 1 and Sup-
plementary Table 3, respectively.

Outcome of Interest
The outcome of interest was renal func-
tion decline over time, which was de-
termined annually by eGFR, estimated
according to the Chronic Kidney Disease
Epidemiology Collaboration (CKD-EPI)
equation (13).

Clinical Risk Factors
The following baseline clinical risk fac-
tors served as candidate predictors: age,
sex, serum cholesterol, urine albumin-
to-creatinine ratio, HbA1c, mean arterial
pressure, and BMI. eGFR at baseline was
part of the dependent variable or in-
cluded as a predictor. Because anemia
does not present a problem in early-stage
CKD, hemoglobin levels were omitted
from the models.

Biomarker Selection andMeasurement
All markers were measured in K3 EDTA
plasma. A custom Human PremixedMul-
tiplex Luminex (catalog no. CUST0I704;
R&D Systems, Minneapolis, MN) was
used to measure 11 markers with 1:2
sample dilution: chitinase-3-like pro-
tein 1 (CHI3L1), chemokine receptor
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ligand 2 (CCL2), growth hormone (GH),
hepatocyte growth factor (HGF), ma-
trix metalloproteinase 1 (MMP1), matrix
metalloproteinase 7 (MMP7), matrix me-
talloproteinase 8 (MMP8), sclerostin
(SOST), tyrosine-protein kinase receptor
(TIE2), tumor necrosis factor receptor
1 (TNFR1), and vascular cell adhesion
molecule 1 (VCAM1). A second Human
Premixed Multiplex Luminex Kit (catalog
no. LXSAH-03; R&D Systems) was used
to measure three markers with 1:50
sample dilution: uromodulin (UMOD), en-
dostatin, and cystatin C. Samples were
diluted using the calibrator diluent pro-
vided in the kit, processed according
to the manufacturer’s specification, and
measured on a Luminex 200 (Luminex,
Austin, TX) with xPONENT 3.1.971.0 soft-
ware. Instrument settings were set accord-
ing to assay protocol.

For the calibration and verification
of the Luminex, a Luminex 200 Perfor-
mance Verification Kit and a Calibration
Kit (catalog no. 40-276 and 40-275; Merck
Millipore, Billerica, MA) were used.

Kidney injury molecule-1 (KIM1) was
measured by ELISA (catalog no. DSKM100;
R&D Systems). Samples were diluted 1:2,
processed according to assay proce-
dure, and measured on a TriStar2 LB 942
Modular Multimode Microplate Reader
(Berthold Technologies, Bad Wildbad,
Germany) using wavelength settings as
instructed in the assay procedure. Ab-
solute concentrations were determined
using MikroWin 2010 v5.21 software
(Berthold Technologies).

For quality control, pooled normal hu-
man plasma K3 EDTA (catalog no. IPLA-N-
100ml-K3 EDTA; Innovative Research,
Novi, MI) was spiked with recombinant

proteins (R&D Systems) to create low-,
medium-, and high-level controls.

All samples were measured as two
technical replicates and required to
have a coefficient of variation (%CV)
below 12%. In addition, 10% of all sam-
ples were remeasured on a different
plate to perform U.S. Food and Drug
Administration (FDA)–recommended in-
curred sample reanalysis. More than 72%
of incurred sample reanalysis showed
a percentage difference below 20%,
and measurements were therefore in
concordance with FDA guidelines (Sup-
plementary Table 4). Values out of quan-
tifiable range were set to 0.5 and 1.5
times the lower and upper quantifica-
tion limits, respectively (Supplementary
Table 5 and Supplementary Fig. 2).

Fibroblast growth factor 23 (FGF23)
was measured using a FGF-23 (C-Term)

Table 1—Baseline characteristics of the study cohort overall and stratified by stable or fast progression of eGFR decline

Baseline value

Missing Overall Stable Fast

Patients (n) 481 258 223

Age (years) 0 64 6 9.3 64 6 10 65 6 9

Female sex 0 232 (47) 117 (45) 115 (50)

Smoking status (never) 0 250 (51) 134 (52) 116 (50)

Duration of diabetes (years) 0 10.8 6 8.8 10 6 8 12 6 9

BMI (kg/m2) 0 31 6 5.5 31 6 5 32 6 6

Blood pressure (mmHg)
Systolic 0 138 6 17.4 138 6 16 139 6 19
Diastolic 0 79 6 10.3 79 6 10 79 6 10

HbA1c (%) 4 (,1) 6.8 (6.3, 7.6) 6.8 (6.3, 7.7) 6.8 (6.2, 7.6)

HbA1c (mmol/mol) 51 (45, 60) 51 (45, 61) 51 (44, 60)

Hemoglobin (mmol/L) 9 (1) 8.6 (8.1, 9.3) 8.8 (8.2, 9.3) 8.5 (7.9, 9.1)

Serum glucose (mmol/L) 1 (,1) 7.4 (6.2, 9) 7.5 (6.3, 9) 7.4 (6, 8.9)

Serum cholesterol (mmol/L) 1 (,1) 4.6 (4, 5.5) 4.6 (4, 5.4) 4.6 (4, 5.6)

Serum creatinine (mmol/L) 0 77 (66, 95) 77 (67, 95) 77 (65, 95)

UACR (mg/g) 14 (3) 8.8 (4.7, 26.5) 8.2 (4.6, 21) 9.2 (5, 36.5)

Glucose-lowering agents* 0
None 59 (12) 35 (14) 24 (11)
1–2 agents 355 (74) 192 (74) 163 (73)
.2 agents 67 (14) 31 (12) 36 (16)

Blood pressure–lowering agents† 0
None 77 (16) 52 (20) 25 (11)
1–2 agents 195 (41) 106 (41) 89 (40)
.2 agents 209 (43) 100 (39) 109 (49)

ESA therapy‡ 0 11 (2) 4 (2) 7 (3)

eGFR CKD-EPI (mL/min/1.73 m2) 0 84 (64, 94) 85 (65, 96) 82 (63, 94)
Decline per year (mL/min/1.73 m2/year) 0 20.71 (26.3, 0.2) 0.14 (20.44, 0.68) 26.75 (29.04, 25.48)

Data are reported asmean6 SD,median (first quartile, third quartile), and absolute frequency (relative frequency)where appropriate. Supplementary
Table 3 gives more details on medication of the study patients. None of the differences between the two groups are significant after adjusting
for multiple comparisons by Holm’s method (except for eGFR decline, which is the outcome of the study). We compared medians of continuous
variables with Mann-Whitney U tests and proportions of categorical variables with x2 tests. ESA, erythropoietin-stimulating agents; UACR, urinary
albumin-to-creatinine ratio. *Agent classes: biguanides, insulin, sulfonylureas, dipeptidyl peptidase 4 inhibitors/glucagon-like peptide 1 agonists,
glinides, glitazones, a-glucosidase inhibitors, sodium–glucose cotransporter 2 inhibitors. †Agent classes: ACE inhibitors/angiotensin 2 receptor
blockers, b-blockers, calcium antagonists (including direct vasodilators), a-blockers, diuretics (thiazide diuretics/loop diuretics). ‡Includes
darbepoetin-a, epoetin-a, epoetin-b, epoetin-u, epoetin-z, and others.
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ELISA (catalog no. 60-610; Quidel, San
Diego, CA) with a dilution of 1:2 according
to the manufacturer’s recommendations.
Signal was measured using EnVision
plate reader (PerkinElmer, Waltham, MA)
using the optical density wavelength
instructed by the procedure. N-terminal
prohormone of brain natriuretic pep-
tide (NTproBNP) was measured using an
NTproBNP ELISA (catalog no. K151JKC;
Mesoscale Discovery, Gaithersburg, MD)
with a dilution of 1:10. Samples were pro-
cessed according to the manufacturer’s
recommendations, and electrochemilu-
minescence signal was measured on a
MESO QuickPlex SQ 120 (Mesoscale
Discovery). Samples were measured in
technical replicates. Interassay %CV was
estimated using internal controls. Due
to limited available sample volume,
NTproBNP and FGF23 concentrations
were determined in only 480 and 437
of the 481 samples, respectively, and
FGF23 concentration could only be de-
termined in single measurements for
86 samples. The %CV were required to
be less than 20% and average inter-
and intra-assay %CV for FGF23 and
NTproBNP were 5.5 and 3.2 and 13.2
and 7.0, respectively.

Samples Size Estimate
Because all 17 biomarkers were pre-
selected from previous projects, we es-
timated that 500 samples would be
sufficient to reach more than 80% power
to detect at least a single biomarker
with a statistically significant effect on
the outcome renal function decline
(Supplementary Fig. 4). Key assumptions
were derived from Mayer et al. (7).

Statistical Analysis
Patient characteristics are described by
mean and SD or median and first and
third quartile for continuous variables
or by frequency and percentage for bi-
nary variables. Biomarker levels be-
tween the stable and fast-progressing
patient groups were compared by Mann-
Whitney U tests. To estimate the effects
of clinical risk factors and protein bio-
markers on the outcome, we used uni-
variable and multivariable linear mixed
models. eGFR baseline measurements
take on a special role in such analy-
sis because they can be understood
as part of the outcome or as a clinical
covariate. Our main goal was to validate
the biomarkers as predictors for renal

function decline; therefore, eGFR levels
at baseline were considered as part of
the outcome and thus included in the
dependent variable because they are
subject to the same random variation
as later values. To compare the contri-
bution of biomarkers and baseline eGFR
to the prediction of future eGFR levels,
we repeated the same modeling pro-
cedure as described in the following
but added baseline eGFR to the set of
covariates and removed it from the de-
pendent variable. Random intercepts and
random slopes were used to model the
patient-specific eGFR trajectories, impos-
ing no restrictions on their covariance. In-
teraction terms with time were included
to model the effect on the eGFR slope.

Results are reported as coefficients
and associated P values. The baseline
coefficient (main effect) can be inter-
preted as association with mean eGFR
levels and the slope coefficient (inter-
action effect) as association with the
eGFR change over time. We investigated
the importance of predictors by apply-
ing backward elimination based on the
Akaike information criterion (AIC) on a
model containing all protein biomarkers
and clinical predictors. Hierarchy of in-
teractions and main effects were kept
intact: a baseline effect was only dropped
if no associated slope effect was present
in the model.

The adjusted R2 of the fixed effects
part was obtained by multiplying the
unadjusted R2 with a correction factor
of (N 2 K 2 1)/(N 2 1), where N and K
denote the number of patients and the
number of fixed effects in the model,
respectively. To further assess the con-
tribution of specific covariates to the
prediction of the outcome, we decom-
posed the adjusted R2 by computing the
drop in R2 when excluding a specific
covariate from the model and scaling
the resulting values to add up to the
total adjusted model R2.

Biomarker levels were log2 trans-
formed to normalize their distributions.
The model results presented here were
pooled by Rubin’s rules from multiply
imputed data sets to account for un-
certainty due to missing data in predic-
tors. Thus, all 481 samples were included
in each model. By applying the variable
selection procedure to each imputa-
tion, we obtained selection frequencies
facilitating assessment of model insta-
bility due to missing data. Our final

model comprised predictors chosen in
at least half of the imputations. Model
instability due to general sampling vari-
ation was assessed by drawing bootstrap
resamples in each imputed data set.

Complete-case-only analyses, the num-
ber of available samples per predictor,
and a description of the multiple im-
putation procedure is provided in the
Supplementary Data.

Logistic regression models were ap-
plied to obtain classification models for
progression status based on the predic-
tor values.

P values of ,0.05 were considered
statistically significant, and all P values are
two-sided. We used R statistical software
(https://www.r-project.org/foundation,
Vienna, Austria) for all analyses.

RESULTS

In total, 481 patient baseline plasma
samples were measured for 17 bio-
markers. A detailed breakdown of
availability by marker is provided in
Supplementary Table 6. Figure 1 shows
biomarker levels grouped by speed of
progression of renal function decline.
When median levels were compared us-
ing Mann-Whitney U tests, several mar-
kers showed a significant difference
between the two groups of patients
(no adjustment for multiple testing).
However, the marker level distributions
overlapped, and the observed differ-
ences were small, with an average of
25%. Nonparametric Spearman correla-
tion coefficients between biomarkers
and clinical data are visualized as a heat
map in Supplementary Fig. 3.

Supplementary Table 7 reports the
results from univariable mixed model
analysis. Reported baseline coefficients
correspond to the prediction of mean
eGFR levels at t = 0 and slope coefficients
to the prediction of the change of eGFR
levels over time. Except for SOST, MMP8,
and CCL2, all markers show a signifi-
cant association with eGFR levels via
the baseline coefficients. Most of these
associations remain significant, even af-
ter adjustment for clinical risk factors
(Supplementary Table 8). Only few bio-
markers show a significant association
with eGFR change over time via their
slope coefficients.

MMP8 (66% of samples below the
limit of quantification) and SOST (30%
missing) were removed from all further
multivariable analyses due to the high
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number of missing values and no appar-
ent association with eGFR decline in
univariable analysis. The results from the
final model obtained from backward
elimination are reported in Table 2. Over-
all, the biomarker predictors account
for 34.4% of the explained variabil-
ity of eGFR levels. According to their

contribution to explained variability,
the biomarkers can be split into two
groups (Supplementary Table 9). Bio-
markers in the first group are mainly
useful for prediction of mean eGFR val-
ues via their baseline coefficients, and
their effect stays constant over time.
The second group also adds to the

prediction of eGFR change over time
via their slope coefficients. However, the
contribution of the second group to the
model R2 is comparatively small (30.9%
for group one and 3.5% for group two),
indicating that the biomarkers contribute
primarily through the prediction ofmean
eGFR levels. Figure 2 shows the model fit
via predictedmedian eGFR trajectories
for stable and fast-progressing patients
from the final mixed model together with
observed eGFR distributions at each FU
visit. An additional bootstrap procedure
shows that almost all predictors fromour
final model are selected with high fre-
quency, indicating satisfactory model
stability (Supplementary Table 10). Fur-
thermore, multivariable models without
variable selection including clinical cova-
riates only and biomarkers on top of
clinical covariates give an indication of
the achievable predictive performance
in this cohort (Supplementary Tables 11
and 12).

The weak association with eGFR slopes
is further demonstrated by low discrim-
inative power when using logistic regres-
sion models to discriminate between
stable and fast-progressing patients.
The resulting low area under the curve
values corroborate our findings that the
biomarkers are mainly associated with
mean eGFR baseline levels (Supplemen-
tary Tables 13 and 14).

Results from the analysis including
baseline eGFR levels as a covariate fur-
ther indicate that the added value of
the biomarkers on top of these mea-
surements is low for the prediction of
future eGFR levels. In corresponding uni-
variable analyses, only six biomarkers
remained significantly associated with
mean eGFR levels when baseline eGFR
was included in the models (Supple-
mentary Table 15).

The final model selected by backward
elimination from the pool of candidate
predictors including baseline eGFR is
provided in Supplementary Table 16.
Compared with the model without base-
line eGFR as a covariate, a further four
biomarkers are eliminated from themodel;
otherwise, biomarker selection remains
similar (Supplementary Table 17). The
dominating influence of baseline eGFR
levels on prediction of eGFR levels after
baseline is expressed by their high ad-
justed R2 measure, which is essen-
tially equal to the model’s R2ddropping
any other predictor leaves the model’s

Table 2—Multivariable linear mixed model for prediction of eGFR levels (with
baseline eGFR as part of the dependent variable) obtained from AIC-based
backward elimination on all candidate predictors (log2 transformed biomarker
and clinical)

Baseline Slope

Predictor Coefficient P value Coefficient P value R2 decomposition

Constant 407.630 ,0.001 22.102 0.396 d

Cystatin C 211.661 ,0.001 n.s. n.s. 9

Endostatin 22.957 0.133 n.s. n.s. ,1

UMOD 2.977 ,0.001 n.s. n.s. 4.3

CHI3L1 1.124 0.037 n.s. n.s. ,1

HGF 0.047 0.949 0.463 0.044 ,1

MMP1 0.731 0.187 20.307 0.082 ,1

MMP7 21.233 0.064 n.s. n.s. ,1

TIE2 4.622 ,0.001 n.s. n.s. 3.3

TNFR1 210.888 ,0.001 n.s. n.s. 12.9

KIM1 20.064 0.922 21.084 ,0.001 3

FGF23 20.983 0.269 0.456 0.086 ,1

NTproBNP 0.071 0.793 20.253 0.006 ,1

Age (years) 20.684 ,0.001 0.048 0.039 27

Current or former smoker 2.460 0.024 n.s. n.s. ,1

Mean arterial pressure 0.085 0.087 n.s. n.s. ,1

Total cholesterol 20.762 0.096 n.s. n.s. ,1

Themodel had an adjusted R2 of 62.5%. Biomarkers had a total contribution of 34.4%, and clinical
risk factors had a total contribution of 28.1%. The decomposition of the model R2 combines the
contributions of baseline and slope coefficients for each predictor. n.s., not selected.

Figure 1—Concentration levels (log2 transformed) for all 17 biomarkers grouped by speed of
progression of renal function decline. All concentrations are given in pg/mL except for FGF23,
which is given in relative units. The quantifiable range of assays is indicated by areas shaded in
gray. *These biomarkers show a significant difference in median levels between the two groups
(Mann-Whitney U test, no P-value adjustment for multiple testing).
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predictions virtually unchanged. How-
ever, even for baseline eGFR levels, the
predictive power is mostly due to pre-
diction of mean eGFR levels after base-
line rather than through thepredictionof
the eGFR slope.
Corresponding complete-case-only

analyses and the number of available
samples per predictor are provided in
Supplementary Tables 18 and 19. The
results remained largely unchanged,
with an adjusted R2 of 62% of the mixed
model for eGFR prediction, thus sup-
porting the validity of the results of the
multiply imputed analysis.

CONCLUSIONS

We performed a validation study of
17 preselected plasma protein markers
with reported high evidence for the pre-
diction of eGFR decline in patients with
type 2 diabetes and incident or early-
stage CKD. We showed in an univariable
analysis that 9 of the markers had sig-
nificantly different concentration levels
between patients with stable eGFR and
fast progression of eGFR decline and that
14 biomarkers significantly contributed
to the prediction of eGFR levels. How-
ever, most of the predictive ability was
attributable to the association with
baseline GFR. In the multivariable anal-
ysis of eGFR decline over time, only five
markers (KIM1, FGF23, NTproBNP, HGF,
and MMP1) remained significant but ex-
hibited only a modest predictive power

on top of clinical covariates. Furthermore,
if the longitudinal analysis was adjusted
for baseline eGFR, none of the bio-
markers were able to contribute a rel-
evant portion of explained variability,
suggesting that baseline eGFR is the key
variable in prediction of renal function
at a very early CKD stage. Interestingly,
urinary albumin excretion was only of
limited value for predicting eGFR loss,
which may be explained by the minute
amount of albuminuria in the patients
investigated.

Other studies of patients with type 2
diabetes and incident or early-stage CKD
have shown that even well-established
clinical risk factors of later-stage disease
do not perform well in discriminating
progressors at early stages. Dunkler et al.
(14) showed by using only clinical varia-
bles that the discrimination for the pro-
gression of CKD in patients with type 2
diabetes is actually very low on an indi-
vidual basis. eGFR and to some extent
albuminuria were the most important
factors for predicting progression, but
their predictive ability in total wasmodest.

Niewczas et al. (15) showed that,
on top of clinical covariates, elevated
concentrations of serum TNFR1 in 410
patients with later-stage disease and
long-term FU was strongly associated
with baseline GFR and predicted end-
stage renal disease (ESRD) that hap-
pened in 59 patients after a median
FU of 12 years. This is in line with our

current and previous findings that TNFR1
exhibited the highest explained variabil-
ity in the longitudinal analysis for eGFR
loss. However, death as a competing risk
factor in analysis of the progression of
kidney disease needs to be considered
here. Differences in lead-time bias be-
tween studies can possibly explain the
discrepancies in biomarker prediction of
eGFR decline between the present and
other studies (15). For example, patients
who reached ESRD in the Niewczas et al.
study exhibited macroalbuminuria of
623 mg/min already at baseline com-
pared with very low-grade albuminuria
of 20 mg/min in patients without pro-
gression. In addition, supporting the argu-
ment of a lead time is that patients who
progressed to ESRD over 12 years ex-
hibited an eGFR reduction by almost
half, to 61 mL/min/1.73 m2 at baseline,
compared with nonprogressors.

Amultinational consortium from France
investigated serum TNFR1 as predictor
of eGFR slope in 522 patients (median
FU of 4 years) with type 2 diabetes
at later CKD stages (i.e., albuminuria
of more than 30 mg/mmol creatinine)
(16). The investigators applied logistic
regression and found a statistically sig-
nificant increase of ESRD discrimina-
tion in each TNFR1 baseline quartile,
but parameter estimates for a multivari-
able model with clinical covariates were
missing.

Similar to our previous study and in
Saulnier et al. (17), we used linear mixed
models to separate the marker contri-
butions into association with baseline
eGFR and eGFR change over time (7).
Our finding of higher levels of TNFR1 and
NTproBNP in the fast progressor group
is in line with the association with renal
function loss observed by Saulnier et al.
(17).

Ban et al. (18) reported serum MMP7
association with proteinuria and GFR in
a cross-sectional analysis.

In 2017, a group from Denver (U.S.)
investigated the test characteristics of
selected plasma biomarkers for predict-
ing eGFR ,60 mL/min/1.73 m2 and
urinary albumin-to-creatinine ratio $30
mg/g in patients with type 1 diabetes
using principal component analysis and
Cox proportional hazards models (19).
The main finding was that after adjust-
ment for traditional risk factors, only KIM1
and cystatin C exhibited a significant but
modest improvement in discrimination.

Figure 2—Predicted median eGFR trajectories from the multivariable linear mixed model for
eGFR levels (with baseline eGFR as part of the dependent variable) obtained by AIC-based
backward elimination (solid line). Shaded areas indicate the interquartile range of predictions.
Superimposed box plots show the observed values summarized at each yearly FU visit.
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The principal component holding the
most promising markers increased the
area under the curve by only 2%. These
results are well in line with our finding
that candidate biomarkers may not be
useful for eGFR slope prediction in pa-
tients with type 2 diabetes.
Recently, Garlo et al. (20) observed

results similar to our findings in their
biomarker evaluation inmore than 5,000
enrolled patients with type 2 diabetes.
eGFR decline occurred in 98 patients
over a median of 1.5 years. Established
markers such as cystatin C or biomarkers
of tubular injury did not substantially
improve the prediction of eGFR loss on
top of clinical predictors.
Our previous analysis of nine bio-

markers in two cohorts of patients with
different baseline eGFR showed that
explained variability of eGFR loss in pa-
tients with eGFR ,60 mL/min/1.73 m2

was mainly driven by MMP7 and TNFR1
(7). In patients with baseline eGFR
$60 mL/min/1.73 m2, contribution of
all markers was modest, with an ad-
justed R2 of 15% and 35% for a com-
bination of biomarkers and clinical
predictors. The inclusion of a further eight
well-investigated biomarkers did not
substantially increase the predictabil-
ity of eGFR loss in our current analysis.
However, 9 of the 17 markers showed
statistically significant differences in
concentration levels between the group
of patients with stable kidney function
and the group with fast renal function
decline, which supports the initial marker
selection for this study. Yet, our analysis
showed that the main contribution of
these biomarkers is their association with
baseline eGFR values rather than eGFR
slopes.
The individual slope of eGFR loss is

highly variable in patients with diabetes
and may be modified by medication.
However, the aim of the current study
was to predict the slope from baseline
biomarkers independently of subse-
quent interventions such as comedi-
cation, lifestyle changes, or any other
factors. Therefore, we did not use med-
ication in our main model on purpose,
because it would be a baseline adjust-
ment for interventions that occurred
afterward, hence using information
not available at time of prediction. In
addition, all patients in the PROVALID
study were optimally treated according
to guidelines for patients with diabetes

(21,22). An analysis including treatment
status at baseline, corroborating the neg-
ligible effect of medication on the per-
formance of the biomarkers, can be found
in Supplementary Tables 20 and 21.

A key strength of PROVALID is that the
study was specifically designed for the
validation of biomarkers in patients with
type 2 diabetes (10). However, our study
has a few limitations. The selection of
patients from the PROVALID cohort
was based on the outcome of eGFR. Al-
though this likely leads to overoptimistic
results, our rationale was to maximize
power to validate the utility of the can-
didate biomarkers to predict eGFR loss
independently of clinical parameters.
This limitation is irrelevant, however,
because performance was poor in this
cohort of early-stage CKD patients even
with the preselection marker. A poten-
tial limitation is the relative short FU of
3 years. However, all patients had base-
line and annual eGFR determinations,
which led to a robust slope estimation
and thus stable marker performance
estimates.

The strengths of our study are the
careful analysis of biomarkers according
to European Medicines Agency and FDA
standards in a multinational prospective
study (http://academy.gmp-compliance
.org/guidemgr/files/UCM368107.PDF).
Sample aliquots were stored at 280°C
immediately after collection and never
thawed until analysis. The percentage
difference between reruns was well
within the FDA recommended range. A
further asset is the thorough statistical
analysis in which we dissociated the
effects of markers on the prediction of
baseline eGFR and slope alone and in
combination with clinical covariates
known to be key risk factors for CKD
progression.

In conclusion, the prediction of eGFR
slope using baseline circulating bio-
markers in combination with clinical
parameters was modest. Most of the
predictive power was generated by the
association of markers with baseline
eGFR, which was by far the strongest
predictor of future eGFR levels. Given
the inferior performance of this highly
selected set of biomarkers in early-stage
CKD patients to predict future eGFR
loss, these markers are not likely to be
useful for clinical decision making. Nev-
ertheless, their assessment might be
useful to identify individual biological

processes that may contribute to the pro-
gression of very early-stage renal disease.

Funding. This project has received funding
from the Innovative Medicines Initiative 2
Joint Undertaking under grant agreement no.
115974. This Joint Undertaking receives support
from the European Union’s Horizon 2020 Re-
search and Innovation Programme and European
Federation of Pharmaceutical Industries and
Associations. This work was partially supported
by the National Institute of Diabetes and Di-
gestive and Kidney Diseases (P30DK081943 to
M.Kr.). M.I.M. is a Wellcome Senior Investigator
supported by Wellcome grants 090532, 098381,
and 203141. This work was also supported
by JDRF award 2-SRA-2014-276-Q-R and by In-
novative Medicines Initiative funding to the
SUMMIT consortium.
The funding sources did not have a role in the

design, conduct, or analysis of the study.
Duality of Interest. No potential conflicts of
interest relevant to this article were reported.
Author Contributions. A.H. supervised data
acquisition and contributed to interpretation of
data and writing of the manuscript. A.H., M.Ka.,
G.M., R.R.-S., K.H., P.P., S.E., L.R., P.B.M., W.J.,
M.Kr., P.G., J.M.W., K.L.D., M.A., M.I.M., G.H.,
H.L.H., A.W., M.F.G., and R.O. revised the man-
uscript for important intellectual content. M.Ka.
performed data processing and analysis and
contributed to writing of the manuscript. G.M.
conceived the design of the study cohort and
contributed data. R.R.-S. contributed to analysis of
thedata.K.H.performedmost laboratorymeasure-
ments and contributed to data quality control. P.P.
contributed to study design and writing of the
manuscript. S.E. contributed to data acquisition.
J.M.W. and K.L.D. contributed additional labora-
tory measurements. M.A. contributed to initial
biomarker selection. G.H. advised on the statis-
tical analysis plan. R.O. wrote the draft of the
manuscript. R.O. is the guarantor of this work
and, as such, had full access to all the data in the
study and takes responsibility for the integrity
of the data and the accuracy of the data analysis.

References
1. Wanner C, Inzucchi SE, Lachin JM, et al.;
EMPA-REG OUTCOME Investigators. Empagliflo-
zin and progression of kidney disease in type 2
diabetes. N Engl J Med 2016;375:323–334
2. Mann JFE, Ørsted DD, Brown-Frandsen K,
et al.; LEADER Steering Committee and Inves-
tigators. Liraglutide and renal outcomes in type
2 diabetes. N Engl J Med 2017;377:839–848
3. Hallan SI, Ritz E, Lydersen S, Romundstad S,
Kvenild K, Orth SR. Combining GFR and albu-
minuria to classify CKD improves prediction of
ESRD. J Am Soc Nephrol 2009;20:1069–1077
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